

Molecules Rotating on Earth and in Space: Laboratory Spectroscopic Strategies Dr. Qian Gou (勾銜)

School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.

qian.gou@cqu.edu.cn

2021-04-07 NAOC, Beijing

Rotational spectroscopy

Spectroscopic technique

Complex organic interstellar molecules

Conclusions

Rotational Spectroscopy

分子光谱(Molecular Spectroscopy)

Types of Molecular Transitions and Spectral Features

Rotational Spectroscopy

The rotational motion of a molecule can be accurately described when its moment of inertia is known.

The moment of inertia of a system of particle (a molecule) is defined as:

The moment of inertia of a rotor

$$I = \sum_{i} m_{i} r_{i}^{2} = \frac{h}{8\pi^{2} cB}$$

I is a measure of the inertia of the system to rotational motion. It depends on the mass distribution of the system.

h is the Planck constant

$$B = \frac{h}{8\pi^2 cI}$$
: rotational constant (in MHz)

Simplest example: Linear rigid rotor

Quadrupole Coupling Effect

Nuclear spin $I > \frac{1}{2} \rightarrow$ Quadrupolar splittings

Quadrupolar hyperfine pattern can be very helpful to assign the spectrum

From quadrupolar coupling constants, the effective orientation can be determined.

Hyperfine spectral structure !

 $I(^{35}CI)=3/2$ $I(^{37}CI)=3/2$ $I(^{14}N)=1$

Large amplitude motions

Flexibility of a molecule is one of the important factors in chemical reaction

The large-amplitude motion is greatly affected by the chemical environment

Rotational Spectroscopy

Accurate molecular geometries:

Bond lengths, angles, dihedral angles

10

One cannot find two identical rotational spectra from two different molecules in the world.

We may not know much, but what we know we really do know – a lot about very little – things. I was to learn later that such levels of satisfying certainty of knowledge are a rarity in many other branches of science and in almost all areas of life in general.

Harold Kroto (1939-2016)

Shared 1996 Nobel Prize in Chemistry with Robert Curl

and Richard Smalley for their discovery of fullerenes

Electromagnetic transmittance, or opacity, of the Earth's atmosphere

ALMA Line Survey

Spectroscopic technique

Line Intensity

The transition intensity is proportional to the square of the transition moment

$$\boldsymbol{R}_r = \int \boldsymbol{\psi}_r'^* \boldsymbol{\mu} \boldsymbol{\psi}_r'' \, \mathrm{d}\tau$$

1. The molecule must have a permanent dipole moment

	$\Delta J = 0$: <i>Q</i> -branch;
2. ΔJ = 0, ± 1	$\Delta J = 1$: <i>R</i> -branch;
	$\Delta J = -1 : P$ -branch.

3. $\Delta M_J = 0, \pm 1$, a rule which is important only if the molecule is in electric or magnetic filed

Line Intensity

Microwave Spectrometers @ CQU

 $\sim 10^{-5} \ Pa$ < 10 K

Supersonic pulsed jet-Fourier transform microwave spectrometer

1. High Resolution: <5 kHz

2. High Accuracy: $\sim 1 \text{ kHz}$

3. Frequency Covering : 2 – 20 GHz (extendable up to 20 – 40 GHz)

4. Highly integrated

Microwave Spectrometers @ CQU

- 1. A pulse of noble gas carrying the sample
- 2. A microwave pulse to produce a macroscopic polarization
- 3. Molecular relaxation gives rise to a transient emission signal (free induction decay)
- 4. Fourier transformation

Spectrometer @ Warsaw

Pulsed supersonic expansion Fourier transform cavity spectrometer (2-18.5 GHz)

Waveguide adsorption microwave spectrometer (2-18 GHz)

Spectrometer @ **Bologna**

Sub-millimeter Spectrometer 75 - 1600 GHz

Part 3

Complex organic interstellar molecules

Interstellar Molecules

- How many molecules are there on Earth?
- ~ 10⁵⁰ molecules*
- How many molecules are there in the "Milky Way Galaxy"?
- ~ 10⁶⁶ molecules*
- * Courtesy: Prof. B. J. McCall, University of Illinois, Urbana, IL.
- ~ 200 molecules detected in space

$\begin{array}{l} \mbox{What molecules exactly exist in space?} \\ \mbox{Astrochemistry?} \\ \mbox{A + B} \rightarrow C + D \\ \mbox{Astrophysics?} \end{array}$

Low temperature, low pressure, low molecular density, cosmic ray ...

The origin of life? > 6 atoms

Complex organic molecules

CNCN

Si₂C

 C_3O

SO

HC₃N

Less abundance, less intense

More flexible, more complex rotational spectra

I. Amines

PKS 1830-211 Astron. Astrophys. 535, (2011)

J $I(1^{4}N) = 1$

Nuclear quadrupole hyperfine structure

 Sgr A

 Astrophys. J. 182, 699–710 (1973)

 Solar-type Protostar

 Astrophys. J. 763, L38 (2013)

 Orion KL

 Astron. Astrophys. 590, L6 (2016)

 Sgr B2

Astron. Astrophys. **605,** L6 (2017)

Prebiotic molecules Large electric dipole moments

Intense transition lines

Isopropylamine

CQU+UNBO+NSP+MPIfR

Sgr B2 1-50 GHz; 90-110 GHz

J. Phys. Chem. A 2020, 124, 1372-1381.

n-Propylamine

Conformational relaxation might take place.

CCSD(T)/PVTZ calculations

CQU+UNBO+NSP+MPIfR+SHAO

J. Phys. Chem. A 2020, 6124, 1372-1381.

Propanamide

Astrophys. J. **169**, L39–L43 (1971) Astron. Astrophys. **590**, Art. No. L6 (2016). Astrophys. J. **763**, Art. No. L38 (2013).

Astrophys. J. 743, Art. No. 60 (2011)

ALMA data, J. Li, J. Wang, et.al. APJL, submitted

II. Derivatives of Benzonitrile

Detection of the aromatic molecule benzonitrile (c- C_6H_5CN) in the interstellar medium

Brett A. McGuire^{1,2,*}, Andrew M. Burkhardt³, Sergei Kalenskii⁴, Christopher N. Shingledecker⁵, Anthony J. Remijan¹, Eric H... + See all authors and affiliations

Science 12 Jan 2018: Vol. 359, Issue 6372, pp. 202-205 DOI: 10.1126/science.aao4890

possess a rich chemistry dominated by unsaturated carbon-chain molecules

4-methylbenzonitrile CH₃C₆H₄CN

100-m Green Bank Telescope

Derivatives of Benzonitrile

Waveguide (in Warsaw)

II. Derivatives of Benzonitrile

Parameters	Values (MHz)	Parameters	Values (MHz)	
F	[163895.215474094]*	$ ho_{ m m}$	2.43(13)	
$0.5V_{6}$	71926.(36)	$ ho_{ m J}$	0.000069(39)	
A-0.5(<i>B</i> + <i>C</i>)	4785.78(14)	$ ho_{ m 3c}$	[-256.430941437492]	
0.5(<i>B</i> + <i>C</i>)	908.25437(40)	$ ho_{ m mm}$	0.4437(84)	
0.5(<i>B</i> - <i>C</i>)	71.9638(24)	$ ho_{ m bc}$	0.0041(21)	
2 ho F	11303.42(35)	$F_{ m mK}$	[-0.005540836582067]	
$D_{ m J}$	0.0000681(73)	$ ho_{ m K}$	0.112(36)	
$D_{ m JK}$	-0.000456(42)	$ ho_{ m mK}$	[0.000988347465579]	393
D_{K}	[0.00348059043738]	$V_{6\mathrm{J}}$	-0.0736(11)	
$2D_{\rm J}$	0.0000828(98)	$F_{\rm KK}$	[-0.000031072168699]	
$2D_{\rm K}$	0.0003(17)	${F}_{ m mJ}$	[0.000059424191133]	
$F_{ m J}$	-0.002350(30)	$F_{ m JK}$	[0.000003729236021]	
F_{K}	[-0.10769406127102]	D_{6bc}	0.320(53)	
		D_{3ab}	26.43(70)	
		$ ho_{ m mmK}$	[-0.000058973526854]	
				30

J. Chen, Z. Kisiel, Q. Gou, et.al. ms in preparation

III. furanitriles

-CN group can introduce large permanent dipole moment

Brett A. McGuire et al. Science 2021;371:1265-1269

III. furonitriles

Maxımum	Dim	lens	lon	IO	гH	amı	Ito	nian = 18					
									EXP.FREQ.	- CALC	.FREQ	DIFF.	- EXP.ERR
1:	2	0	2	3	1	0	1	2	737	0.25800	7370.25	686 0	0.00114
2:	2	0	2	2	1	0	1	1	737	0.17570	7370.17	429 0	0.00141
3:	2	0	2	1	1	0	1	0	736	9.08510	7369.08	638 -0	0.00128
4:	2	0	2	2	1	0	1	2	736	8.88610	7368.88	636 -0	0.00026
5:	2	0	2	1	1	0	1	1	737	2.30670	7372.30	654 0	0.00016
6:	2	1	2	3	1	1	1	2	701	7.44060	7017.43	958 0	0.00102
7:	2	1	2	2	1	1	1	1	701	6.11860	7016.11	677 0	0.00183
8:	2	1	2	1	1	1	1	0	701	8.92910	7018.92	866 0	0.00044
9:	2	1	2	2	1	1	1	2	701	6.91410	7016.91	462 -0	0.00052
10:	2	1	2	1	1	1	1	1	701	6.93460	7016.93	404 0	0.00056
11:	2	1	1	3	1	1	0	2	775	0.72120	7750.72	174 -0	0.00054
12:	2	1	1	2	1	1	0	1	774	9.37750	7749.37	701 0	0.00049
13:	2	1	1	1	1	1	0	0	775	1.93150	7751.93	209 -0	0.00059

Experimental spectroscopic parameters

A, B, C/MHz	9220.2508(7), 2029.2736(2), 1662.6430(2)
X_{aa} , (X_{bb} - X_{cc}) /MHZ	-4.294(4), 1.026(4)
<i>D</i> _J /kHz	0.057(3)
D _{JK} /kHz	2.90(1)
<i>D</i> _k /kHz	0.35(6)
<i>d</i> ₁ /kHz	-0.016(6)
<i>d</i> ₂ /kHz	-0.0112(8)

2-furonitrile

III. furonitriles

Table. 1. Experimental spectroscopic parameters of 3-Furonitrile

	A/MHz	<i>B</i> /MHz	C/MHz	N	σ/kHz
Normal	9296.5468(2)	1940.26644(2)	1604.63185(2)	659	5.9
01	9149.70(4)	1894.4776(1)	1568.9246(1)	58	5.8
C2	9218.015(1)	1916.7287(1)	1586.1899(1)	77	2.4
C3	9068.0379(8)	1938.24136(9)	1596.29796(9)	77	1.9
C4	9296.87(2)	1939.55597(7)	1604.16062(7)	66	1.4
C5	9106.2281(9)	1938.5122(1)	1597.6641(1)	77	2.1
C6	9296.504(1)	1917.8573(1)	1589.2754(1)	77	2.4
N7	9296.5601(9)	1880.0222(1)	1563.1955(1)	18	1.1

Fig. 2. The experimental r_s position of the isotopically substituted atoms is included for comparison with the MP2/ 6-311++G(d,p) calculated structure (background).

Quadrupole hyperfine structure

Fig. 3. Rotational spectra recorded with Helium (0.1 MPa) as the carrier gas

IV. CH₃NCS

A, B, C: 102100, 2500, 2479 MHz $\mu_{a}, \mu_{b}, \mu_{c}$: 3.5,0.6, 0.0 D

Parameter	SPFIT	XIAM
<i>A</i> /MHz	[102100.14]	81071.1931(25)
<i>B</i> /MHz	2532.4445(25)	2532.337(11)
C/MHz	2493.6644(31)	2505.7488(98)
<i>D</i> _J /kHz	0.328(73)	4.113(90)
<i>D</i> _{JK} /kHz	-3899.2(14)	-141.2(17)
⊿J/kHz	-	1.34(30)
V3/MHz	-	4028.1949(24)
Dpi2J/MHz	-	0.001359(39)

Conclusion

Conclusions

Rotational spectroscopy

- Sensitive to molecular mass distribution
- Powerful tool to identify molecules in ISM
- Laboratory rotational data is required for detection of new molecules and for identification of new lines of detected molecules
- > Ongoing Project
- Electronic discharge nozzle (transient species)
- PJ-FTMW spectrometer (frequency extension up to 40 GHz)
- Room temperature millimeter waveguide cell spectrometer (30-240 GHz)

Update @ DC-discharge

Update@ 20-40 GHz

Update @ Millimeter Spectrometers

Room temperature waveguide cell absorption spectrometer

- 1. Frequency Covering : 30 240 GHz
- 2. Vibrational exited states
- 3. High sensitivity

Acknowledgement

- Sottfried-Wilhelm-Leibniz-Universtät, Hannover, Germany Prof. J.-U. Grabow
- 🖏 University of Bologna, Italy

Prof. W. Caminati, C. Puzzarini

- Scuola Normale Superiore di Pisa, Italy Prof. V. Barone, J. Bloino
- Polish Academy of Sciences, Poland Prof. Z. Kisiel

C S T C Chongqing Science and Technology Commission

Thank you for your attention!

Methacryl alcohol

Parent Species

Over rotation		Internal rotation	
A/MHz	7482.831(2)	V_{3}/cm^{-1}	598(2)
<i>B/</i> MHz	3925.724(2)	Delta/rad	1.76(1)
C/MHz	2930.0209(9)	\angle (<i>i</i> , <i>a</i>)/°	100.9(6)
$D_{ m J}/ m kHz$	0.85(8)	$\angle(i,b)/^{\circ}$	11.4(6)
$D_{ m JK}/ m kHz$	13.4(4)	\angle (<i>i</i> , <i>c</i>)/°	86.594(8)
$D_{\rm K}/{ m kHz}$	-7.2(4)	N	38
d_1 /kHz	-0.13(8)	σ/kHz	4.3

¹³C isotopologues in natural abundance (~1%)

	C2	C3	C4	C5
A/MHz	7430.932(2)	7481.638(2)	7365.901(2)	7281.080(2)
<i>B</i> /MHz	3897.8431(8)	3915.3717(9)	3859.0142(9)	3900.5971(8)
C/MHz	2915.9834(4)	2924.3826(6)	2876.4740(5)	2884.7245(5)
N	16	16	17	18
σ/kHz	3.3	4.2	3.8	3.4
V_{3}/cm^{-1}	604(2)	601(3)	598(2)	602(2)

4-Hydroxy-2-butanone

Parent Species

Over	rotation	Internal	rotation
A/MHz	7284.365(3)	<i>V</i> ₃ /cm ⁻¹	206.721(1)
<i>B</i> /MHz	2286.331(2)	ε/rad	0.688(5)
C/MHz	1926.799(2)	δ /rad	2.809(1)
$D_{\rm J}/{\rm kHz}$	0.70(5)	$\angle (i,a)/^{\circ}$	75.3(1)
N	76	$\angle (i,b)$ /°	78.0(1)
		$\angle (i.c)^{\circ}$	160.92(6)

¹³C isotopologues in natural abundance (~1%)

	C3	C6	C10	C11
A/MHz	7236.890(6)	7177.468(3)	7283.889(3)	7267.730(4)
<i>B</i> /MHz	2261.383(1)	2286.2526(7)	2277.805(1)	2230.762(1)
C/MHz	1908.334(1)	1919.2207(6)	1920.7442(9)	1886.941(1)
V_{3}/cm^{-1}	206.7450(1)	206.54042(7)	206.8607(1)	206.8461(2)
N	16	13	16	17

Laboratory Rotational Spectroscopy

star forming region NGC63341

Radiotelescope observation requires the accuracy of transition frequency better than 100 kHz.

Computational accuracy > MHz (and gets worse with J increasing).

Phys Life Rev 2020, 32, 59-94 44

Observation with Radio telescopes

Observation with Radio telescopes

CH₂CCHCN

 CH_3C_3N

Tianma towards TMC-1 46

n-Propylamine

