TRILEGAL Milky Way Stellar Mock Catalogue for the Chinese Station Space Telescope

Yang Chen（陈洋）

Anhui University（安徽大学）
cy＠ahu．edu．cn

Outline:

- Brief history of understanding the Milky way
- Introduction of TRILEGAL:
- Galactic models
- Stellar models
- TRILEGAL MW simulation for CSST
- Concluding remarks and prospects

Brief history of understanding the Milky way

History: Galileo's obs. of the MW

- In 1610, Galileo Galilei: MW is composed by countless stars

Two telescopes built by Galileo, Museo Galileo, Florence Image Source: www.mpg.de

Galileo's original sketch of the three stars in Orion's belt and the Orion Nebula

Hisotry: Kant's idea of MW

- 1750, Thomas Wright: Milky Way is a thin spherical shell of stars. The Sun is located inside the shell about midway between the inner and outer edges.
- In 1755, Immanuel Kant: MW is a large collection of stars gravitationally bound, rotating and flattened as a disk, with the Solar System embedded within the disk. Propsed "island universes" theory and sparked the "great debate".

Wright's original woodcut

History: Herschel's MW

- In 1785, William Herschel: attempted to actually map out the shape of the Milky Way, based on the assumptions/neglections:
- Stars uniformly distributed inside the MW boundary
- Not realizing dust absorption

History: Kapteyn \& Shapley's MW

- Jacobus Kapteyn (1901~1922): used photographic star counting, estimated distances statistically based on parallax \& proper motions of nearby stars.
- Harlow Shapley (1915~1921): estimated globular cluster distances from RR Lyrae stars.

Oort's illustration of the discrepancy of the Kapteyn Universe and
Shapley's system of globular clusters. From de Sitter's book 'Kosmos'.

History: MW's position in the Universe by Hubble

- In 1923, Edwin Hubble: using Cepheids in M31, measured the distance M31 to be $\sim 300 \mathrm{kpc}(765 \mathrm{kpc}$ nowadays' value), with the 100-inch Hooker telescope at Mount Wilson Observatory.

> ANOTHER UNIVERSE SEEN BY ASTRONOMER

> Dr. Habble Describes Mass of Celestial Bodies 700,000 Light Years Away.

CHICAGO, Jan, 21 ($\begin{gathered}\text { P),-For years }\end{gathered}$ astronomers have speculated as to whether various nebulous formations in the heavens belongs to this universe or were "island" universes of their own, immeasurable distances away.

From New York Times, 1923

History: MW Stellar populations

- As early as 1926, Jan Oort has recognized two types of stellar populations.
- During 1944, Walter Baade, categorized groups of MW stars into
- Population I: bluer stars associated with spiral arms
- Population II: yellow stars dominated near the bulge and within GC

History: modern view of the MW

Fig 1.8 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

Multiwavelength Milky Way

Multiwavelength Milky Way

Introduction of TRILEGAL

Star counting Galactic model

Principle of star counting models based on stellar population synthesis :

$$
\begin{gathered}
N\left(m_{\lambda}, \hat{\mathbf{r}}\right) \mathrm{d} m_{\lambda}=\mathrm{d} m_{\lambda} \int_{r=0}^{r=\infty} \rho(\mathbf{r}) \phi\left(M_{\lambda}, \mathbf{r}\right) r^{2} \mathrm{~d} \Omega \mathrm{~d} r \\
M_{\lambda}=m_{\lambda}-5 \log r-A_{\lambda}(r)+5
\end{gathered}
$$

The goal of star counting models: to find the correct $\rho(\mathbf{r})$ and $\phi\left(M_{\lambda}, \mathbf{r}\right)$

Galactic components \& luminosity functions

$$
\begin{aligned}
& \rho(\mathbf{r}) \quad \rho=\rho_{\mathrm{d}}+\rho_{\mathrm{h}}+\rho_{\mathrm{b}} \\
& \left.\rho_{\text {duk }}(r) \propto \exp \mid-z / H(M)-\left(x-r_{0}\right) / h\right] \\
& p_{\text {phberesis }}(f) \propto\left(r / r_{0}\right)^{-7 / 8} \exp \left[-10.1\left(r / r_{0}\right)^{1 / 4}\right] \text {; } \\
& \text { and } \\
& \rho_{\text {muative brto }}(r)=\rho_{g}\left(r_{0}\right)\left[a^{2}+r_{0}^{2}\right] /\left[a^{2}+r^{2}\right]
\end{aligned}
$$

$$
\phi\left(M_{\lambda}, \mathbf{r}\right)
$$

$$
\phi\left(M_{\lambda}, \boldsymbol{r}\right)=\phi\left(M_{\lambda}\right) \quad \text { for different components }
$$

1. Empirical ones: derived from Solar Neighbourhood or globular clusters: Bahcall \& Soneira 80-83, GALFAST (Juric+08)
2. Theoretical ones: Population synthesis star count models Requires: IMF, SFH, age-metallicity relation (AMR), Stellar models eg., Besançon (Robin+03), TRILEGAL (Girardi+05), Just-Jahreiss+08, Galaxia (Sharma+11), GalMod(Pasetto+18), etc.

Distance of Sun from the Galactic Center: as an example

Label	Reference	Mahod	Lucition	T	$R_{0}\left(k_{p c}\right)$
$\mathrm{Kd}+00$	Keid et al. (20001)	Trig, parallav if Sige ${ }^{\text {b }}$	G:	4	T.901 20.75
Mot12	Morris of al. (z012)	Ortort of $\mathrm{SO}-2$ arounil Sgr A ${ }^{\text {c }}$	GC.	d	-70 $\pm 0.40 \mathrm{an}$
Gi+09	Gillease et ali (2000¢)	Steller urlies anoumd Spr A^{*}	GC:	d	
Ch+15	Charmpeulus es al. (2015)	NSC. statistial jarallas	GK:	d	H. 27 ± 0.13
D_{0+15}	Doetal (2017)	NSC stanstial purallat	GC	d	8.92 ± 0.36
H815	Bribara \& Robyfer (2015)	Trik-paralleses of HMESFRs	Ds\%	17	$H .03 \pm 0.58$
Rd+14	Remi et al. (201+)	Tree parilame of Hidstres	DS.	m	*.34 $=0.19$
His+12	Hinams et al (2012)	Trug-purallever of HMSFRs	DSN	II	8.05 ± 0.48
ZS13	Thu \& Shen (2013)	Near- R_{0} rotation y umpe tracen	DSN	III	8.008 ± 0.02
Bol3	Bobylev (2015)	Neir-Eq motion SFR + Caphods	bsiv	m	745 ± 0.06
Sch12	Schumrich (2012)	Near- R_{0} rutation SEGUE staci	DSN	mi	H. 27 ± 0.41
ke+15	Koppereral, (2015)	Tidal tails of $\mathrm{P}_{\text {ale }} \mathrm{S}$	III	is	*3, 30 ± 0.85
NH+09\%	Nanlatlldeke er al. (200\%)	Bulge seillar pogulasiam nualai	B	II	H. $20 \pm \pm 0.60$
$\underline{\mathrm{B}}+15$	Fietrusamicr et aL (2015)	Bolge RR Lytac sars	B	3	8.27 ± 0.40
De+13	Datiny dal. (2013)	Fhalge Rel Lyme saus	15	8	6.33 ± 0.17
$\mathrm{D}_{2} 09$	Dambis (2009)	Disk-halo RR Lytac pars.	DSN	3	-53 50.87
M $2+13$	Mitsmens ec al. 22013$)$	Nodar Inlese T.ll Cepheide	15	1	730 ± 0600
Ma+11	Matsenaga er al. (2011)	Nedear Lnise Cequerih	It	1	7.60 ± 0.10
Gr+08	Gitiemwiechet al, 12008)	Buled Ciplowis	8	4	T08 ± 0.51
	Mtasunaga er al. czown)	Hulge Mirac	11	3	H. $27+0.41$
GrB05	Giroencsegen \&e Blommater (2005)	Bules Sline	B	8	8.60 ± 0.81
Filt	Francis \& Anderson (2014)	Bulge ral clump games.	15	\cdots	7.80 20.808
Ca+13	Caneral. (2013)	Iulye rel cluapp piaus	II	*	8.20 ± 0.20
Fr+11	Fritz et al. (2011)	NSC red dump gauls	G6	8	799 ± 0.76
FA14	Frances \& Anicrson (2014)	All ghabular clasier*	B.III	3	240土 103 H
Bi+06	Brasesal. (2006)	Halo glotalar chusen	III	4	7.10 ± 0.54

Figure +

From Bland-Hawthorn \& Gerhard, 2016, ARAA

Comparison of different star counting MW models

Model	Bulge	Thin disk	Thick disk	Halo	DM	Else	Stellar model	Dynamics	Kinem atics	Com ment
TRILEGAL (Girardi+05)	Triaixal	$\begin{aligned} & \text { Exp.+ } \\ & \text { Sech^2 } \end{aligned}$	$\begin{aligned} & \text { Exp.+ } \\ & \text { Sech^2 } \end{aligned}$	Power-law, axisymmetric	N	N	PARSEC	N	Y	
Besançon (Robin+03)	Exponential	Exponential	Exp.	Exp., spherical	Y	Warp, flare	Padova	Y	Y	
Galaxia (Sharma+11)		Simi	to Besançon			Accept N -body sim.	Padova	Selfconsistent	Y	
$\begin{aligned} & \text { J-J } \\ & \text { (Just \& Jahreiß, } \\ & \text { 10) } \end{aligned}$		Disc			Y	Gas	PEGASE (with Padova models as default)	Y	Y	S. Gao contri buted
$\begin{aligned} & \text { GalMod } \\ & \text { (Pasetto+18) } \end{aligned}$	Spherical+density potential	Exp. + Sech ${ }^{\wedge}$		Solved from the potential	Y	Bar	PARSEC	Y	Y	

TRILEGAL's Galactic components

Geometry:

Thin disk exp. in R and sech ${ }^{2}$ in z, scale height increasing with population age
Thick disk exp. in R and sech ${ }^{2}$ in z, fixed scale height
Halo power-law oblate
Bulge triaxial cf. Binney+97
Dust layer exp. in z, extinction cf. SFD+98, SF+11, Abergel+14, Lallement+18, Green+19
External objects (e.g. SMC and LMC)

Galactic component	Mass distribution	Constants	
Thin disk	$\begin{aligned} & \rho_{\mathrm{d}}=\mathcal{C}_{\mathrm{d}} \frac{\exp \left(-R / h_{R d}\right)}{\cosh ^{2}\left(0.5 z / h_{\mathrm{Jd}}\right)} \\ & h_{z d}(t)=z_{0}\left(1+t / t_{0}\right)^{5 / 3} \end{aligned}$	$\begin{aligned} & t_{R d}=2913.36 \mathrm{pc} \\ & t_{0}=5.55079 \cdot 10^{9} \end{aligned}$	$\begin{gathered} z_{0}=94.69 \mathrm{pc} \\ C_{\mathrm{d}}=0.14691 \mathrm{M} / \mathrm{pc}^{3} \end{gathered}$
Thick disk	$\rho_{D}=C_{D} \frac{\exp \left(-R / / h_{R D}\right)}{\cosh ^{2}\left(0.5 z / h_{I D}\right)}$	$\begin{gathered} h_{R D}=2394.07 \mathrm{pc} \\ \mathrm{C}_{\mathrm{D}}=0.00378 \mathrm{M}_{-} / \mathrm{pc}^{3} \end{gathered}$	$h_{z D}=800.0 \mathrm{pc}$
Bulge	$\begin{gathered} \rho_{b}=f_{0} \frac{\exp \left(-a^{2} / a_{1 m}^{2}\right)}{\left(1+a / a_{0}\right)^{1 . /}} \\ a=\sqrt{x^{2}+(y / \eta)^{2}+(z / \zeta)^{2}} \end{gathered}$	$\begin{gathered} f_{0}=406.0 \mathrm{M}_{0} / \mathrm{pc}^{3} \\ a_{0}=95.0 \mathrm{pc} \end{gathered}$	$\begin{gathered} a_{\mathrm{kP}}=2500.0 \mathrm{pC} \\ \eta=0.68 \quad \zeta=0.31 \end{gathered}$
Halo	$\rho_{\mathrm{h}}=C_{h}\left(\frac{R_{z}}{\sqrt{R^{2}+(z / q)^{2}}}\right)^{275}$	$q=0.62 \mathrm{pc}$	$\mathrm{C}_{\mathrm{h}}=10^{-4} \mathrm{M}_{6} / \mathrm{pc}^{3}$

Stellar populations:

Each component has its own IMF, SFH, AMR
IMF Chabrier+03 by default, Kroupa, Salpeter, etc.
Binary fraction default 30\% for mass ratio 0.7-1
Bulge age~10Gyr, AMR cf. Zoccali+03
Thick disk age~10Gyr, AMR cf. Boeche+13
Halo constant SFR over the last 12-13 Gyr, AMR cf. Henry \& Worthey 99
Think disk constant SFR over the last 11 Gyr, AMR cf. Rocha-Pinto+00
External objects specific IMF, SFR and AMR
Check Girardi+05 for more details

PARSEC: PAdovalandtRieste

 Stellar Evolutionary Code

PARSEC Tracks/Isochrones

PARSEC-

 TRILEGAL models with interacting binaries new WD \& N tracks:
Padova models: diffusion mixing by Deng+96a,b

Stellar evolution with turbulent diffusion by Licai Deng, A\&A, 1996, v.313, p.145-158 \& p.159-179

PARSEC very-low mass stars

PARSEC Pre-Main Sequence models

Fu+15: envelope OV + residual accreting reproduces the Spite-plateau

PARSEC models for very-massive stars

Chen +15

PARSEC models for very-massive stars

PARSEC models for very-massive stars

Tang+16: Contrary to what has been stated in the literature, we find that the Schwarzschild criterion, instead of the Ledoux criterion, favours the development of blue loops

PARSEC models with alpha-enhancement

Fu+18: PARSEC alphaenhanced model ftting to 47 Tuc

Important for elliptical galaxies, dSph, GC, thick disk, bugle, halo, ...

PARSEC model of rotating stars

TP-AGB models: ERC project STARKEY

Starkey results: Pastorelli+19,+20, Chen +18 , \& in preps., Marigo +20

ARTiClis
outuo
istronoryy
Carbon star formation as seen through the non-monotonic initial-final mass relation

 Bernturd Alinger 'asd heob Dad Tio -:

$\cdots \quad 0$

CMD: stev.oapd.inaf.it/cgi-bin/cmd

```
Evalokinwy trade
```



```
masectal
```



```
- FARECC vmiba LI
*)
```



```
*)
```



```
montix vimem
```


Comparison of different stellar models

Name	mass range	z range	abundance	EOS	OP	NR	Rotation	stages	Else1	BC	UD
PARSEC (Bressan, SISSA)	0.1-350	5 E 4 to 0.07	solar,a	FREEEOS	$\begin{aligned} & \text { OPAL+ÆSOP } \\ & \text { US } \end{aligned}$	JINA REACLIB	$\begin{aligned} & 0.002 \text { to } \\ & 0.02 \text {, } \\ & \text { omega=0 } \\ & \text { to } 0.995, \\ & \mathrm{mi}=1 \text { to } 5 \end{aligned}$	Pre-MS to AGB0/CB0		Phoenix +Grey	19
MESA/ MIST (Paxton, UCSB)	0.1-300	$[\mathrm{Fe} / \mathrm{H}]=-4$ to 0.5	solar	OPAL+SCVH+Ma cDonald	Ferguson05+ Freedman08 $+O P+O P A L$	JINA REACLIB	$\begin{aligned} & \text { v/vcrit=0, } \\ & 0.4 \end{aligned}$	Pre-MS to WD	Planets, Oscillations	$\begin{aligned} & \text { ATLAS1 } \\ & \text { 2+Grey } \end{aligned}$	16
Bastl (Cassisi, Teramo; Salaris, JMU)	0.1-15(new)	$1 \mathrm{E}-5$ to 0.05	solar,a,CNO	FREEEOS	OPAL	NACRE	N	Pre-MS to AGB0/CB0	WD, diff. Reimers etas	$\begin{aligned} & \text { Vernazz } \\ & a+81 \end{aligned}$	18
DESP (Dotter, Dartmouth)	0.1-4	$\begin{aligned} & {[\mathrm{Fe} / \mathrm{H}] \text { from }-2.5 \text { to }} \\ & +0.5 \end{aligned}$	Solar,a	ideal gas+FREEEOS	OPAL + Ferguson05	$\begin{aligned} & \text { Adelberger+9 } \\ & 8 \end{aligned}$	N	$\begin{aligned} & \text { Pre-MS to } \\ & \text { AGBO } \end{aligned}$			08
FRANEC (Chieffi \& Limongi)									link		
Genova (Meynet)									link		
STERN (Brott)									$\underline{\text { link }}$		
STAREVOL (Decressin)									link		
Yale-Yonsei-Potsdam (Demarque)									link		
Pisa (Tognelli)									link		
Victoria-Regina (VandenBerg)									link		
Eggleton									link		
CESAM (Morel \& Lebreton)									link		

TRILEGAL Bolometric

 corrections
YBC (Chen+19)

Stellar spectral libraries:

ATLAS
PHOENIX
COMARCS
WM-basic
PoWR
Koester
TLUSTY

Extinction:

Circumsterllar dust: Marigo+
Interstellar dust: CCM+O94, FM07, etc.
Supported photometric systems:
Basically all publicly available
UV-Opt.-NIR-MIR systems

TRILEGAL Bolometric

corrections

YBC (Chen+19)
Fiorella Castelli
Stellar spectral lib ATLAS
PHOENIX COMARCS
WM-basic
PoWR
Koester
TLUSTY

France Allard

France
1983.2020

Extinction:

Circumsterllar dust: Marigo+ Interstellar dust: CCM+094, FM07, etc.

Supported photometric systems:
Basically all publicly available
UV-Opt.-NIR-MIR systems

PARSEC Bolometric Correction by Yang Chen@Padova

 YBC: stev.oapd.inaf.it/YBC

 YBC: stev.oapd.inaf.it/YBC http://SEC.CENTER/YBC

 http://SEC.CENTER/YBC}

Latest News

YBC paper on arXiv.org/astro-ph
Dectocerizsl 2019
The atpor is avaunke a:
 orpusiccition NASA.

Non-uniform extinction for stars
ocmetzish. 2019
Naw you can bupply shunent 20chan value the siliterestab hyar cankyue by waielyres te ediviei ne toor ul sedoes \&

New extinction interpolation scheme and corrrections

TRILEGAL output: synthetic stellar catalogues

TRILEGAL calibrations

Photometric surveys:

Groenewegen+02:
Halo+disk
Girardi+05: Halo+disc Vanhollebeke+09: Bulge Pieres+20: Discs+Halo

Spectroscopic surveys:

 RAVE, SEGUE, etc.
Asteroseismic surveys:

CoRoT, Kepler, etc.

TRILEGAL simulation (no errors, no pulsation)

stev.oapd.inaf.it/cgi-bin/trilegal

TRILEGAL DEMO 1: LSST sky survey sim.

Blank intentionally

TRILEGAL DEMO 2: SMC \& LMC sim.

TRILEGAL DEMO 3: M31 sim.

Blank intentionally

TRILEGAL DEMO 4: Binaries

Dal Tio+19

TRILEGAL DEMO 5: Star Cluster sim.

Blank intentionally

TRILEGAL DEMO 6: MW foreground stars for high-z objects

Niida+20: stellar contamination to the QSO sample

TRILEGAL MW simulation for CSST

CSST filters

CSST filter transmission curves (from CSST group)
SEDs: CK03 ATLAS9 models of Teff=6000K and $10000 \mathrm{~K}(\log =4,[\mathrm{M} / \mathrm{H}]=0)$

Skymap pixelization

HEALPix nested subdivision scheme:

Gorski+05

TRILEGAL simulation running

TRILEGAL sim. of the north galactic pole

Absolute magnitude vs. effective temperature CSST-OS will reach $\mathrm{g} \sim 25.5$ (or 26.5) mag. A star with $\mathrm{M}(\mathrm{g}) \sim 15$ mag, will have $\mathrm{g} \sim 25$ mag at 1 kpc , being above CSST-OS limit.

TRILEGAL sim. of the north galactic pole

Color-magnitude

 diagram: g-r.vs. g

TRILEGAL sim. of the Baade's window

Absolute magnitude vs. effective temperature CSST-OS will reach g~25.5 (or 26.5) mag. A star with $\mathrm{M}(\mathrm{g}) \sim 10.35 \mathrm{mag}$, will have $\mathrm{g} \sim 25$ mag at 8.5 kpc , being above CSST-OS limit.

TRILEGAL sim. of the Baade's window

Color-magnitude diagram: g-r.vs. g

TRILEGAL sim. of the anti-Gal. direction

Absolute magnitude vs. effective temperature CSST-OS will reach $\mathrm{g} \sim 25.5$ (or 26.5) mag. A star with $\mathrm{M}(\mathrm{g}) \sim 15$ mag, will have $\mathrm{g} \sim 25 \mathrm{mag}$ at 1 kpc , being above CSST-OS limit.

TRILEGAL sim. of the anti-Gal. direction

Color-magnitude diagram: g-r.vs. g

TRILEGAL sim.: crowding limit analysis

CSST-OS: PSF FWHM~0.15 arcsec, photometric error ~ 0.2 mag at $25.5 \mathrm{mag}, 0.01 \mathrm{mag}$ at 29 mag .

TRILEGAL sim. of star clusters

Simulated star clusters of $0.12,1$ and 4.5 Gyr with errors included.

Concluding remarks prospects

- TRILEGAL is a powerful stellar population synthesis tool, can be used for broad applications, including for supporting the science of next generation telescopes
- We have generated a full sky MW mock stellar catalogue for CCST, and will do so for nearby galaxies. These catalouges will be publicly available
- We will refine PARSEC stellar models and TRILEGAL galactic models to provide better models

TRILEGAL：
Active coding people

Collaborators：Bressan A．，Xiaoting Fu，Costa G．，etc．
十
External collaborators：LSST，UW，STScl，SDSS，etc．

```
CSST MW TRILEGAL Sim.:
Initiates: Xiaoting Fu., Yang Chen, Chao Liu, etc.
+
TRILEGAL people
```

