

Youfen Wang , Ali Luo, Wenping Chen, Hugh Jones et al 2022.11.3 National Astronomical Observatory of China

OUTLINE

- Introduction ultracool dwarfs
- Sample selection
- Gaia EDR3 Photometry
- Spectroscopic analysis
- Kinematic diagnosis
- Common proper motion binary
- Summary

INTRODUCTION-ULTRACOOL DWARFS

- Definition of ultracool dwarfs
 - Brown dwarfs: 0.075 and $0.013 M_{\odot}$
 - Late M and early L dwarfs: low mass star & brown dwarfs
 - Mid-L to T dwarfs: all brown dwarfs
 - this sample : Late M ultracool dwarfs low mass star and brown dwarfs

- Data set used
 - LAMOST DR7 with R~ 1800
 - 11412 M6 or latter:3764 dwarfs (33 %), 7648 giants(67%)
 - Cross-match with the Gaia EDR3 within 5 arcsec
 - 469 BP-RP <1.0 removed</p>
 - Visually inspection
 - Excluded:giants, early type or bad quality SPECTRA
 - 734 late M dwarfs derived
 - Visually checked the 734 cross-match

- Spectral features of giants versus dwarfs
 - Stronger in dwarfs : K I doublets 7688 Å, Na I 8189 Å, CaH between 6800 and 7000 Å, CrH and FeH around 8700 Å
 - Stronger in giants: Ca II triplets at 8498 Å, 8542 Å, and 8662 Å

Strong in Dwarf	wavelengt h	7688A	8189	6800-7000	8700
	Line/band	KI	Nal	CaH	CrH\FeH
Strong in Giant	8498	8542	8662		
		Call			

6000 6500 7000 7500 8000 8500 9000

- excluded versus reserved
 - Snr_z < 2 excluded(~4% of 11412)</p>
 - Compare spectra
 - Spectra with weaker KI, Na, and CaH
 - Early type M
 - a mixture of two sources, or bad spectra ETC
 - 734 sources are derived(9 are originally classified as giants in the official catalog)

- Sample of ultracool dwarfs
 - LAMOST official Spectral type of the sample

ЅрТ	dM6	dM7	dM8	dM9	L0	gM6	gM7	gM8	gM9
number	577	128	16	3	1	3	2	1	3

- Two thirds are spectroscopically studied for the first time(SIMBAD)
- The L0 was once observed by other telescopes and classified as L0e and M9.5

- Diagram of sky distribution
 - Grey big circles the footprints
 - green cross the 11412 late M
 - 4900 plates each 5 Square Degree
 - Footprint 20000 square degree
- Cool dwarf ratio study with Gaia
 - 130,000,000 sources within LAMOST 20000 square degree, 143 thousand late M dwarfs(BP-RP >3, G < 19 and G_{abs} >9), cool dwarf ratio 0.11%
 - LAMOST observed10 million Gaia sources, pipeline 3764 late M dwarfs, cool dwarf ratio 0.03%
 - very low portion of ultracool dwarfs

GAIA EDR3 PHOTOM

- Distance and apparent magnitude
 - All within 360pc, 80% within 100pc
 - Magnitude ~12 to ~19.2, mainly ~16.2
 - SNR in z 2 to 432, median 61

GAIA EDR3 PHOTOMETRY

- Restricts on Gaia data
 - Parallax uncertainty smaller than 20%, G、 BP and RP greater than 0, 677 sources left
 - reciprocal distance
- Color –magnitude diagram
 - Black solid dots– 677 of the 734 ultracool dwarfs
 - Cyan solid dots– 11412 late m
 - Plot a : 2.5<BP-RP <5mag, 9<G_{abs}<16.7 mag(UCD)</p>
 - Plot b:G-RP color have bigger scatter
 - Fainter or Binary

SPECTROSCOPIC ANALYSIS

- Methods to get parameters
 - LAMOST stellar parameter pipeline for M stars (LASPM) , minimize the $\chi^2\,$ 6000 to 8800 , SNr I > 5
 - grids: BT-Settle CIFIST2011(Allard et al 2011,2012)
 - Grids covering

	Teff(K)	Log g(dex)	FeH(dex)
range	300-8000	0-6.0	-2.5-0.5
step	100	0.5	0.5

SPECTROSCOPIC ANALYSIS

Atmosphere parameters

• Teff 2600 K to 3300 K, mean temperatures for each SpT :

SpT	M6	M7	M8	M9
<teff></teff>	3018	2917	2775	2675

- usually higher than the literature(200K),
- reason of bias: saturation of TiO absorption band
- surface gravity: 3.5 to 5.5 dex mean : 4.43 dex
- metallicity -0.99 to +0.38, <[M/H]> = -0.33, consistent with Galactic disk dwarfs (Wyse & Gilmore 1995, <[M/H]>= -0.4)
- Caution for individual parameter

SPECTROSCOPIC ANALYSIS

- Lithium diagnosis
 - Young late M have higher possibility being brown dwarf
 - Lithium line: indicator of young
 - 0.065 to 0.075 solar mass brown dwarfs burn the lithium up within about 100Myr
 - 77 ultracool dwarfs have lithium
 - labeled H/M/L

KINEMATIC DIAGNOSIS

Space position and velocity

- RV(lamost dr7), RV Zhong et al 2015, 3 sigma clip
- Five astrometric parameter from Gaia EDR3
- The U V W and R Z derived assume:
 - 1)U V W assume

Positive direction towards U the Galactic center V the Galactic rotation W the Galactic north pole

- (2) R = 8.2 kpc (Bland-Hawthorn & Gerhard 2016);
- (3) LSR 238 km/s, motion of the sun to LSR is [U; V;W] = [14.0; 12.24; 7.25] km/s (Schönrich et al. 2010)
- 4) the distribution of equatorial coordinates, proper motion, and parallax is a multivariate Gaussian (Marchetti et al. 2019; Li et al. 2021).

KINEMATIC DIAGNOSIS

- Galactic population analysis
 - 1) R vs z diagram : -289 <z<229 pc, 8100<R<8500 pc
 - 2) toomre diagram: 70 thick/ thin disk limit, 180/220 thick disk/ halo limit
 - 3)possibility ratio method(Bensby et al 2003):thick disk to thin disk(TD/D) / thick disk to halo (TD/H)probability, 491 have TD/D greater than 0.1 being thin disk objects.
- Most of our ultracool dwarfs are thin disk objects, a small part being thick disk

KINEMATIC DIAGNOSIS

- Velocity distribution and kinematic age
 - Binaries excluded, u v w not LSR corrected, cyan dotted line are thick disk
 - Kinematic age: A monotonic increase of velocity dispersion with age growing for a given stellar population.

COMMON PROPER MOTION BINARY

- Identification
- Data used: Gaia astrometry and PanSTARRS image
- 35 common proper binaries, 6 are newly discovered
- The others are in the literature, e.g. WDS catalog,
- Catalog of ultra-wide binary stars from Gaia DR2

PS1 y/i/g band combined images Top north, bottom south, right west and left east. Scale 20 arcsec

COMMON PROPER MOTION BINARY

- Positions in CAMD(X G-RP, Y absolute G)
 - Black solid circles the 734 UCDs, blue open square the A components, red open triangles the b components
 - 21 binaries have both component with magnitude and parallax data
 - one white-late m binary (26a and 26b) Tian 2020
 - Several line not parallax to the MS

SUMMARY

- 734 ultracool dwarfs (spt M6 or later, one L0), two thirds spectroscopically studied for the first time
- All within 360 pc, Gaia G mainly around 16, 2.63<BP-RP<5, absolute magnitude fainter than 9
- Metallicity consistent with being thin-disk objects, Teff and log statistically reasonable
- 77 with 6708 Å lithium absorption line
- Kinematic suggest the majority thin-disk objects, Kinematic age derived
- 35 common proper motion identified, 6 newly discovered

The end, thanks!

yfwang@bao.ac.cn

