Coronal Magnetic Field Measurements from EUV wavelengths

Wenxian Li／李文显

National Astronomical Observatories， Chinese Academy of Sciences，China

Collaborators：

Peking University：Hui Tian group
NAOC：Huairou Solar Observing Station
High Altitude Observatory：Philip G．Judge Nanjing University：Feng Chen

Fudan University：Shanghai－EBIT laboratory
Lund Univ．，Malmö Univ．：LUMCAS group
University of Michigan：Enrico Landi LMSAL／SETI Institute：Meng Jin

Magnetized solar atmosphere

Sunspot Area Coverage in 50 Equal Area Latitude Bands

Schematic of Zeeman splitting and polarization of the π and σ components Reiners, LRSP, 9,1, (2012)

Accurate and routine measurements of solar magnetic field achieved at the photospheric level (e.g., Huairou Solar Obs. Station, SDO/HMI, ASOS-FMG)

Spectropolarimetry of the visible and near-infrared coronal emission lines

 (Lin et al. 2000, ApJ; Lin et al. 2004, ApJL; Tomczyk et al. 2008, SoPh; Liu \& Lin 2008, ApJ; Li et al. 2017, ApJ)$V=-k B_{\mathrm{LOS}} \partial I / \partial \lambda$

Lin et al. 2000, ApJ

Averaged Stokes Q and V profiles of Fe XIII 1074.7 nm line

Lin et al. 2004, ApJL

Contour map of the measured coronal magnetic field strength using Fe XIII overplotted on the EUV Imaging Telescope Fe XV image

70 minutes of integration time; need larger aperture to achieve higher S/N.

Radio imaging observations (Vasanth et al. 2014, SoPh; Chen et al.Tan et al. 2012, ApJ; Chen et al. 2020, NatAs; Fleishman et al. 2020, Science)

Fleishman et al. 2020, Science

Microwave observations taken with EOVSA overplotted on the AIA 193 Å

Evolving maps of the coronal magnetic field.
diversity of emission mechanisms; variability in different regions and at different frequency ranges; need high temporal, spatial and spectral resolutions

Magnetoseismology (Nakariakov \& Ofman 2001 ; Chen et al. 2011 ; Long et al. 2017; Magyar \& Van Doorsselaere 2018; Yang et al. 2020, Science; 2020, ScChE)

Coronal Multi-channel Polarimeter, CoMP

$$
c_{\mathrm{k}}=\frac{B}{\sqrt{\mu_{0}\langle\rho\rangle}}
$$

- c_{k} : phase speed: wave-tracking technique
- $\langle\rho\rangle$: mass density: Fe XIII 1079.8/1074.7nm intensity ratio for electron density
- B: plane of sky component of coronal magnetic field strength

Global map of coronal magnetic field obtained through magnetoseismology using CoMP observations

Only the POS component of B in off-limb corona; Cannot be applied to regions affected by solar eruptions

Magnetic-field Induced Transition

- mixing states i and j; " "new" transition channel $i \rightarrow k$: magnetic-field induced transition (MIT)

$$
A_{M I T}(i \rightarrow k) \propto A(j \rightarrow k) \frac{B^{2}}{\lambda^{3}\left(\Delta E_{i j}\right)^{2}}
$$

Schef et al. 2005, PRA @ Ion Storage Ring

change in lifetime

Beiersdorfer et al. 2003, PRL @ Electron Beam Ion Trap

 change in spectral features/line ratios

EUV magnetic-induced transition in Fe X

-- close degeneracy between short- and long-lived levels (Li et al. 2015, 2016, ApJ)

> Compare the observed 257/Ref. from EIS with theoretical predictions Line Ratio, LR(T,N,B)

Laboratory measurement of MIT in Fe X at different magnetic fields@SH-Htsc EBIT

Xu et al. 2022, ApJ

Forward modeling with 3D MHD models-solar corona

Disk-center

Chen et al. 2021, ApJ

- Density: Fe X 175/174
- Temperature: 184/345

(a): B_{0}
(b)-(f): $\mathrm{B}_{\mathrm{MIT}}$ derived using different ref. lines

Off-limb

(a) $\mathrm{Fe} \mathrm{X} 174 \AA$
(b) Fe X $175 \AA$
(c) Fe X $177 \AA$
(d) Fe X $184 \AA$
(e) Fe X $255 \AA$

Forward modeling with 3D MHD models-stellar coronae

Liu et al., 2022, ApJ
$\begin{aligned} & \text { emissivity-weighted } \\ & \text { average field strength : }\end{aligned} \quad B_{0}\left(i, e_{t h}\right)=\frac{\int_{V^{\prime}\left(i, e_{t h}\right)} B \cdot e_{174} d V}{\int_{V^{\prime}\left(i, e_{t h}\right)} e_{174} d V} \quad e_{t h}$: emissivity threshold

$$
B_{0}=B_{1}
$$

Best fitted V' (gray isosurface) for different LOS directions
The measured field strength from MIT diagnostic technique largely reflects the average field strength in stellar active regions.

Hinode/EIS Measurements of Solar Coronal Magnetic Fields

Hinode/EIS (since 2007):
$170-210 \AA$ (SW)
$250-290 \AA(L W)$

- reference line: $184 \AA$
- Density: Fe X 174/175 Å
- $\log \mathrm{T} / \mathrm{K}=6.0$
- Weak-field regime

Summary

EUV in $\mathrm{Fe} X$

Theoretical
investigation

Forward modeling

| Laboratory
 measurement\quadHinode/EIS
 observations |
| :---: | :---: |

Pros and Cons:

- Spectroscopic method
- Both disk-center and off-limb measurements
- Only intensity but not direction measurement

Future perspective

- Improve on: theoretical model + EIS observations + instrument
- Search for other potential MIT lines
- Combination of different techniques

Spectropolarimetry

magnetoseismology

radio observations

- Atomic physics + Astrophysics: "unexpected" transitions

